论文标题
通过增加碳纳米管纳米反反应器的直径,将磷同素异形体从方形柱状结构更改为平面曲折纳米替比
Changing the Phosphorus Allotrope from a Square Columnar Structure to a Planar Zigzag Nanoribbon by Increasing the Diameter of Carbon Nanotube Nanoreactors
论文作者
论文摘要
元素磷纳米结构对于大量同素型臭名昭著,这限制了它们作为半导体的有用性。为了限制这种结构多样性,我们在碳纳米管(CNT)内选择性地合成了准磷纳米结构,既充当稳定的模板和纳米反应器。曲折的磷纳米骨优选在内径超过1.4 nm的CNT中形成,但观察到磷的先前未知的正方形柱状结构在较窄的纳米管内形成。我们的发现得到了电子显微镜和拉曼光谱观测以及从头算密度的功能理论计算的支持。我们的计算结果表明,在内径约1.0 nm的CNT中,优选形成方形柱状结构,而黑色磷纳米纤维则优选形成,内部直径为4.1 nm,曲折纳米骨本内直径为4.1 nm,具有能量高于扶手椅的纳米骨。我们的理论预测与实验发现一致。
Elemental phosphorus nanostructures are notorious for a large number of allotropes, which limits their usefulness as semiconductors. To limit this structural diversity, we synthesize selectively quasi-1D phosphorus nanostructures inside carbon nanotubes (CNTs) that act both as stable templates and nanoreactors. Whereas zigzag phosphorus nanoribbons form preferably in CNTs with an inner diameter exceeding 1.4 nm, a previously unknown square columnar structure of phosphorus is observed to form inside narrower nanotubes. Our findings are supported by electron microscopy and Raman spectroscopy observations as well as ab initio density functional theory calculations. Our computational results suggest that square columnar structures form preferably in CNTs with inner diameter around 1.0 nm, whereas black phosphorus nanoribbons form preferably inside CNTs with 4.1 nm inner diameter, with zigzag nanoribbons energetically favored over armchair nanoribbons. Our theoretical predictions agree with the experimental findings.