论文标题

神经网络检测地震范围

Seismic horizon detection with neural networks

论文作者

Koryagin, Alexander, Mylzenova, Darima, Khudorozhkov, Roman, Tsimfer, Sergey

论文摘要

在过去的几年中,卷积神经网络(CNN)在许多域中成功采用,以解决与图像相关的各种任务,从简单分类到良好的边界注释。跟踪地震视野没有什么不同,并且有很多论文提出了这种模型的用法,以避免耗时的手工挑选。不幸的是,其中大多数是(i)对合成数据进行了训练,该数据无法完全代表地下结构的复杂性,(ii)在同一立方体上训练和测试,或者(iii)缺乏可重复性和模型构建过程的精确描述。考虑到所有这些,本文的主要贡献是将二进制分割方法应用于在多个真实地震立方体上的地平线检测任务上的开源研究,重点是预测模型的基础间概括。

Over the last few years, Convolutional Neural Networks (CNNs) were successfully adopted in numerous domains to solve various image-related tasks, ranging from simple classification to fine borders annotation. Tracking seismic horizons is no different, and there are a lot of papers proposing the usage of such models to avoid time-consuming hand-picking. Unfortunately, most of them are (i) either trained on synthetic data, which can't fully represent the complexity of subterranean structures, (ii) trained and tested on the same cube, or (iii) lack reproducibility and precise descriptions of the model-building process. With all that in mind, the main contribution of this paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源