论文标题

鲁宾天文台遗产时空调查(LSST)的概率光度红移估计方法的评估(LSST)

Evaluation of probabilistic photometric redshift estimation approaches for The Rubin Observatory Legacy Survey of Space and Time (LSST)

论文作者

Schmidt, S. J., Malz, A. I., Soo, J. Y. H., Almosallam, I. A., Brescia, M., Cavuoti, S., Cohen-Tanugi, J., Connolly, A. J., DeRose, J., Freeman, P. E., Graham, M. L., Iyer, K. G., Jarvis, M. J., Kalmbach, J. B., Kovacs, E., Lee, A. B., Longo, G., Morrison, C. B., Newman, J. A., Nourbakhsh, E., Nuss, E., Pospisil, T., Tranin, H., Wechsler, R. H., Zhou, R., Izbicki, R., Collaboration, The LSST Dark Energy Science

论文摘要

光度星系调查的许多科学研究都需要红移估计,其不确定性特性最好通过光度红移(Photo-Z)后验概率密度函数(PDFS)封装。大量的Photo-Z PDF估计方法比比皆是,产生差异结果,在首选方法上没有共识。我们介绍了一个综合实验的结果,该实验比较了针对鲁宾天文台遗产时空(LSST)Dark Energy Science Collocoration(DESC)的十二个照片Z算法。通过提供完美的先验信息,以完整的模板库的形式和代表性的培训集作为每个代码的输入,我们演示了每种技术对输出Photo-Z PDFS的假设的影响。在没有真实的,公正的照片-Z PDF的概念的情况下,我们评估和解释了派生的Photo-Z PDF的集合特性的多个指标,以及传统的降低照片-Z点估计值。我们报告了许多流行代码的Photo-Z PDF的系统偏见以及整体上/底层的整体偏见,这可能表明算法或实现方案的改进途径。此外,我们将注意力集中在评估Photo-Z PDF准确性方面的既定指标的局限性;尽管我们将条件密度估计值(CDE)丢失确定为有希望的照片-Z PDF性能的指标。

Many scientific investigations of photometric galaxy surveys require redshift estimates, whose uncertainty properties are best encapsulated by photometric redshift (photo-z) posterior probability density functions (PDFs). A plethora of photo-z PDF estimation methodologies abound, producing discrepant results with no consensus on a preferred approach. We present the results of a comprehensive experiment comparing twelve photo-z algorithms applied to mock data produced for The Rubin Observatory Legacy Survey of Space and Time (LSST) Dark Energy Science Collaboration (DESC). By supplying perfect prior information, in the form of the complete template library and a representative training set as inputs to each code, we demonstrate the impact of the assumptions underlying each technique on the output photo-z PDFs. In the absence of a notion of true, unbiased photo-z PDFs, we evaluate and interpret multiple metrics of the ensemble properties of the derived photo-z PDFs as well as traditional reductions to photo-z point estimates. We report systematic biases and overall over/under-breadth of the photo-z PDFs of many popular codes, which may indicate avenues for improvement in the algorithms or implementations. Furthermore, we raise attention to the limitations of established metrics for assessing photo-z PDF accuracy; though we identify the conditional density estimate (CDE) loss as a promising metric of photo-z PDF performance in the case where true redshifts are available but true photo-z PDFs are not, we emphasize the need for science-specific performancemetrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源