论文标题
G函数积分方法的进一步应用
Further applications of the G function integral method
论文作者
论文摘要
在我们最近的工作中,我们提出了beta积分方法的概括,以推导过度几何身份,该方法可以用类比称为“ G函数积分方法”。在本文中,我们将此技术应用于立方体和退化的Miller-Paris转换,以在固定的参数中为广义超几何函数获得几种新的转换和求和公式。我们进一步提出了一种替代方法,用于将方法从我们的方法中导致的右侧侧面降低到单个高几幅函数,该函数不需要使用求和公式。
In our recent work we proposed a generalization of the beta integral method for derivation of the hypergeometric identities which can by analogy be termed "the G function integral method". In this paper we apply this technique to the cubic and the degenerate Miller-Paris transformations to get several new transformation and summation formulas for the generalized hypergeometric functions at a fixed argument. We further present an alternative approach for reducing the right hand sides resulting from our method to a single hypergeometric function which does not require the use of summation formulas.