论文标题

横向通用结的存在

The existence of a transverse universal knot

论文作者

Rodríguez-Viorato, Jesús

论文摘要

我们证明,有一个结$ k $横向到$ξ_{std} $,紧密的接触结构为$ s^3 $,因此每个触点3- manifold $(m,ξ)$可以作为覆盖沿$ k $的分支的联系人获得。通过联系覆盖,我们的意思是$ k $分支的地图$φ:m \至s^3 $,因此$ξ$是$ξ_{std} $在$φ$下提升的同位素。

We prove that there is a knot $K$ transverse to $ξ_{std}$, the tight contact structure of $S^3$, such that every contact 3-manifold $(M, ξ)$ can be obtained as a contact covering branched along $K$. By contact covering we mean a map $φ: M \to S^3$ branched along $K$ such that $ξ$ is contact isotopic to the lifting of $ξ_{std}$ under $φ$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源