论文标题

从贪婪的同型基础上获得最小的网状细化的良好同型基础的规范多边形架构

Obtaining a Canonical Polygonal Schema from a Greedy Homotopy Basis with Minimal Mesh Refinement

论文作者

Livesu, Marco

论文摘要

任何封闭的属G属的封闭歧管都可以打开以形成拓扑磁盘,然后映射到具有4G侧的常规多边形。该结构称为歧管的规范多边形模式,是图形和工程中许多应用的关键要素,在这种图形和工程中,通常需要两个具有相同拓扑的形状的参数化。 4g gon的侧面定义了循环系统,它们在单个点相交,并且在其他地方是不连接的。计算此类循环的最短系统是NP-HARD。一种可计算障碍的替代方案包括计算一组最短的回路,这些循环在多项式时间内并非完全不相交,使用Erickson和Whittlesey提出的贪婪同质基础基础算法,然后通过网格的细化来分离后处理。尽管这项操作在概念上很简单,但已知的改进策略对于高属形状的扩展不是很好,从而触发了可能超过现代计算机中可用内存量的网格增长,从而导致故障。在本文中,我们研究了各种局部改进的操作员,以分离循环系统中的周期,并表明它们之间存在着重要的差异,无论是在网格的复杂性和原始表面的保存方面。我们最终提出了两种新颖的改进方法:前者最小化网格中的新元素数量,可能是以偏离输入几何形状的成本。后者允许交易网格复杂性,以获得几何精度,从而使偏离输入表面的偏差。这两种策略都无法实施,并且实验证实,即使对于以前的方法失败的极高属形状,它们即使在极高的属形状中也可以实现规范的多边形模式。

Any closed manifold of genus g can be cut open to form a topological disk and then mapped to a regular polygon with 4g sides. This construction is called the canonical polygonal schema of the manifold, and is a key ingredient for many applications in graphics and engineering, where a parameterization between two shapes with same topology is often needed. The sides of the 4g-gon define on the manifold a system of loops, which all intersect at a single point and are disjoint elsewhere. Computing a shortest system of loops of this kind is NP-hard. A computationally tractable alternative consists in computing a set of shortest loops that are not fully disjoint in polynomial time, using the greedy homotopy basis algorithm proposed by Erickson and Whittlesey, and then detach them in post processing via mesh refinement. Despite this operation is conceptually simple, known refinement strategies do not scale well for high genus shapes, triggering a mesh growth that may exceed the amount of memory available in modern computers, leading to failures. In this paper we study various local refinement operators to detach cycles in a system of loops, and show that there are important differences between them, both in terms of mesh complexity and preservation of the original surface. We ultimately propose two novel refinement approaches: the former minimizes the number of new elements in the mesh, possibly at the cost of a deviation from the input geometry. The latter allows to trade mesh complexity for geometric accuracy, bounding deviation from the input surface. Both strategies are trivial to implement, and experiments confirm that they allow to realize canonical polygonal schemas even for extremely high genus shapes where previous methods fail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源