论文标题

在超导拓扑绝缘子的表面状态下固定涡流中的绑定费米态:Majorana绑定状态

Bound fermion states in pinned vortices in the surface states of a superconducting topological insulator: The Majorana bound state

论文作者

Deng, Haoyun, Bonesteel, Nicholas, Schlottmann, Pedro

论文摘要

通过分析求解Bogoliubov-De Gennes方程,我们研究了二维超导体中涡流核心中心的fermion结合状态。我们考虑三种2D超导模型:(a)在混合状态下具有低密度涡流线的标准II型超导体,(b)具有强旋转轨道耦合的超导体,可平行于动量和(c)超导型的旋转旋转,并且(c)强型旋转式旋转锁定旋转旋转旋转的旋转旋转型旋转型号,并具有动量的动量。 2D超导状态是通过$ S $波超导体与强拓扑绝缘子的表面状态之间的接近效应诱导的。如果(a)激发的能量差距为$δ_ {\ infty}^2/(2e_f)$,而对于案例(b)和(c)零能量的majoriagana state伴随着零间隔($δ^^^^^2 _^2_ {\ infty}/e_f $)序列。旋转摩托明锁定是Majorana State形成的关键。我们提出了能量谱和波函数的分析表达式。

By analytically solving the Bogoliubov-de Gennes equations we study the fermion bound states at the center of the core of a vortex in a two-dimensional superconductor. We consider three kinds of 2D superconducting models: (a) a standard type II superconductor in the mixed state with low density of vortex lines, (b) a superconductor with strong spin-orbit coupling locking the spin parallel to the momentum and (c) a superconductor with strong spin-orbit coupling locking the spin perpendicular to the momentum. The 2D superconducting states are induced via proximity effect between an $s$-wave superconductor and the surface states of a strong topological insulator. In case (a) the energy gap for the excitations is of order $Δ_{\infty}^2/(2E_F)$, while for cases (b) and (c) a zero-energy Majorana state arises together with an equally spaced ($Δ^2_{\infty}/E_F$) sequence of fermion excitations. The spin-momentum locking is key to the formation of the Majorana state. We present analytical expressions for the energy spectrum and the wave functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源