论文标题
对牙垢的结果重新访问,在半连双曲系统上的结果无效
Revisitation of a Tartar's result on a semilinear hyperbolic system with null condition
论文作者
论文摘要
我们重新审视塔塔尔(Tartar)引入的一种方法,用于证明一个半线性双曲系统在一个空间维度中具有无二次源的全局良好性。一个值得注意的观点是,由于一维双曲系统没有分散效应,因此牙垢的方法完全基于空间定位和传播的有限速度。
We revisit a method introduced by Tartar for proving global well-posedness of a semilinear hyperbolic system with null quadratic source in one space dimension. A remarkable point is that, since no dispersion effect is available for 1D hyperbolic systems, Tartar's approach is entirely based on spatial localization and finite speed of propagation.