论文标题
AE-OT-GAN:来自数据特定潜在分布的培训gan
AE-OT-GAN: Training GANs from data specific latent distribution
论文作者
论文摘要
尽管生成的对抗网络(GAN)是产生逼真和清晰的图像的主要模型,但它们经常遇到模式崩溃问题和AREHARD训练,这是由于近似与连续dnns的固有性分布变换映射。最近提出的AE-OT模型通过在AutoCododer的潜在空间中求解半混凝土的OptimalTransport(OT)映射来明确计算不连续的分布变换图,从而解决了此问题。在本文中,Wepropose AE-OT-GAN模型利用了这两种模型的优势:生成高质量的图像,并且在这些模型时,可以克服模式崩溃/混合物问题。特别是,我们首先忠实地将低维歧管嵌入了潜在的空间中,通过训练Autoen-decoder(AE)。然后,我们计算最佳传输(OT)图,该图将均匀分布向前推向潜在歧管上支持的LA-TENT分布。最后,我们的GAN模型经过训练,可以从潜在分布中生成高质量的图像,从而将分布转换为从经验数据分布将是连续的。潜在代码和TREEL图像之间的配对数据使我们对生成器进行了进一步的限制。对简单的MNIST数据集和复杂数据集的CIFAR-10和Celeba的示例显示了所提出的方法的功效和效率。
Though generative adversarial networks (GANs) areprominent models to generate realistic and crisp images,they often encounter the mode collapse problems and arehard to train, which comes from approximating the intrinsicdiscontinuous distribution transform map with continuousDNNs. The recently proposed AE-OT model addresses thisproblem by explicitly computing the discontinuous distribu-tion transform map through solving a semi-discrete optimaltransport (OT) map in the latent space of the autoencoder.However the generated images are blurry. In this paper, wepropose the AE-OT-GAN model to utilize the advantages ofthe both models: generate high quality images and at thesame time overcome the mode collapse/mixture problems.Specifically, we first faithfully embed the low dimensionalimage manifold into the latent space by training an autoen-coder (AE). Then we compute the optimal transport (OT)map that pushes forward the uniform distribution to the la-tent distribution supported on the latent manifold. Finally,our GAN model is trained to generate high quality imagesfrom the latent distribution, the distribution transform mapfrom which to the empirical data distribution will be con-tinuous. The paired data between the latent code and thereal images gives us further constriction about the generator.Experiments on simple MNIST dataset and complex datasetslike Cifar-10 and CelebA show the efficacy and efficiency ofour proposed method.