论文标题

自然图像通过引导的上下文关注

Natural Image Matting via Guided Contextual Attention

论文作者

Li, Yaoyi, Lu, Hongtao

论文摘要

在过去的几年中,基于深度学习的方法在自然图像垫子方面取得了出色的改进。这些方法中的许多方法都可以产生视觉上合理的α估计,但通常在半透明区域产生模糊结构或纹理。这是由于透明对象的局部歧义。一种可能的解决方案是利用远距离的信息来估计当地的不透明度。传统基于亲和力的方法通常会遭受高计算复杂性的影响,这不适用于高分辨率alpha估计。受基于亲和力的方法的启发,以及在indpaining中的上下文注意力的成功,我们使用带导向的上下文注意模块为自然图像垫子开发了一种新颖的端到端方法,该方法是专门为图像贴图设计的。指导性的上下文注意模块直接基于学习的低级亲和力在全球范围内传播高级不透明度信息。所提出的方法可以模仿基于亲和力的方法的信息流,并同时使用深层神经网络学到的丰富特征。 Composition-1K测试集和Alphamatting.com基准数据集的实验结果表明,我们的方法在自然图像垫子中的表现优于最先进的方法。代码和型号可在https://github.com/yaoyi-li/gca-matting上找到。

Over the last few years, deep learning based approaches have achieved outstanding improvements in natural image matting. Many of these methods can generate visually plausible alpha estimations, but typically yield blurry structures or textures in the semitransparent area. This is due to the local ambiguity of transparent objects. One possible solution is to leverage the far-surrounding information to estimate the local opacity. Traditional affinity-based methods often suffer from the high computational complexity, which are not suitable for high resolution alpha estimation. Inspired by affinity-based method and the successes of contextual attention in inpainting, we develop a novel end-to-end approach for natural image matting with a guided contextual attention module, which is specifically designed for image matting. Guided contextual attention module directly propagates high-level opacity information globally based on the learned low-level affinity. The proposed method can mimic information flow of affinity-based methods and utilize rich features learned by deep neural networks simultaneously. Experiment results on Composition-1k testing set and alphamatting.com benchmark dataset demonstrate that our method outperforms state-of-the-art approaches in natural image matting. Code and models are available at https://github.com/Yaoyi-Li/GCA-Matting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源