论文标题

非线性抛物线偏微分方程的无条件基于内核的稳定方案

A Kernel Based Unconditionally Stable Scheme for Nonlinear Parabolic Partial Differential Equations

论文作者

Wang, Kaipeng, Christlieb, Andrew, Jiang, Yan, Zhang, Mengping

论文摘要

在本文中,提出了一类高阶数值方案来求解具有可变系数的非线性抛物线方程。该方法基于我们以前的对流扩散方程[10]的工作[10],该方程依赖于基于特殊的解决方案的特殊表述和连续的卷积。但是,当我们将先前的方法扩展到方程式时,会出现缺点,例如参数的效率低下以及对高维问题的无法证实的稳定性。为了克服这些困难,新的基于内核的配方旨在接近空间衍生物。它保持原始良好的特性,包括高阶精度和一维问题的无条件稳定,因此与其他显式方案相比,时间步长更大。另外,没有额外的计算成本,提出的方案可以扩大公式中特殊参数的可用间隔,从而导致较小的错误和更高的效率。此外,理论研究表明,对于多维问题,它也无条件稳定。我们提出了一维标量和系统的数值测试,展示了该方案设计的高阶精度和无条件稳定的属性。

In this paper, a class of high order numerical schemes is proposed to solve the nonlinear parabolic equations with variable coefficients. This method is based on our previous work [10] for convection-diffusion equations, which relies on a special kernel-based formulation of the solutions and successive convolution. However, disadvantages appear when we extend the previous method to our equations, such as inefficient choice of parameters and unprovable stability for high-dimensional problems. To overcome these difficulties, a new kernel-based formulation is designed to approach the spatial derivatives. It maintains the good properties of the original one, including the high order accuracy and unconditionally stable for one-dimensional problems, hence allowing much larger time step evolution compared with other explicit schemes. In additional, without extra computational cost, the proposed scheme can enlarge the available interval of the special parameter in the formulation, leading to less errors and higher efficiency. Moreover, theoretical investigations indicate that it is unconditionally stable for multi-dimensional problems as well. We present numerical tests for one- and two-dimensional scalar and system, demonstrating the designed high order accuracy and unconditionally stable property of the scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源