论文标题
Gutzwiller的有效张量网络表示,配对费米子的状态
Efficient tensor network representation for Gutzwiller projected states of paired fermions
论文作者
论文摘要
Wu {\ em等人} [Arxiv:1910.11011]的最新工作提出了一种数值方法,即所谓的矩阵产品运营商 - 矩阵产品状态(MPO-MPS)方法,通过该方法,几种类型的量子多身体波函数,尤其是预测的Fermi Sea State,可以有效地代表一个Tysor Networt。在本文中,我们概括了MPO-MPS方法,以研究Gutzwiller预测的Fermions配对状态,在该状态下,Bogoliubov Quasiparticles/Quasiholes的最大局部局部脱水轨道已被调整以提高计算性能。 $ SO(3)$ - 对称自旋-1链的研究表明,这种新方法的性能要比变化的蒙特卡洛(Gapped State)更好,并且对于无间隙状态而言类似的性能。此外,我们证明了通过此方法与其他基于MPS的准确方法(例如Chebyshev MPS方法)合作的方法可以轻松评估动态相关函数。
Recent work by Wu {\em et al.} [arXiv:1910.11011] proposed a numerical method, so-called matrix product operator-matrix product state (MPO-MPS) method, by which several types of quantum many-body wave functions, in particular, the projected Fermi sea state, can be efficiently represented as a tensor network. In this paper, we generalize the MPO-MPS method to study Gutzwiller projected paired states of fermions, where the maximally localized Wannier orbitals for Bogoliubov quasiparticles/quasiholes have been adapted to improve the computational performance. The study of $SO(3)$-symmetric spin-1 chains reveals that this new method has better performance than variational Monte Carlo for gapped states and similar performance for gapless states. Moreover, we demonstrate that dynamic correlation functions can be easily evaluated by this method cooperating with other MPS-based accurate approaches, such as the Chebyshev MPS method.