论文标题

层流不可压缩的Navier-Stokes的精确无迭代混合稳定配方:用于流体结构相互作用的应用

Accurate iteration-free mixed-stabilised formulation for laminar incompressible Navier-Stokes: Applications to fluid-structure interaction

论文作者

Kadapa, Chennakesava, Dettmer, Wulf G, Peric, Djordje

论文摘要

稳定的混合速度压力制剂是用于计算层流不可压缩的Navier-Stokes的数值溶液的广泛使用的有限元方案之一。在这些公式中,采用了牛顿 - 拉夫森计划来解决对流术语中的非线性。这种方法的一个基本问题是在每个负载/时间步骤的牛顿 - 拉夫森迭代中产生的计算成本。在本文中,我们为不可压缩的Navier-Stokes提出了无迭代的混合有限元配方,该配方可保留速度和压力场的通用α和相关方案的二阶时间准确性。首先,我们使用数值收敛研究来证明二阶时间准确性用于制造溶液的示例。后来,我们通过研究流过固定圆柱体的基准示例来评估所提出的方案的准确性和计算益处。为了在更广泛的环境中展示提出的技术的适用性,还考虑了INF-SUP稳定的P2-P1对,用于不稳定的配方。最后,使用提出的方案用于流体结构相互作用问题的结果,使用两个基准示例在流体 - 芬兰结构相互作用中进行了说明。

Stabilised mixed velocity-pressure formulations are one of the widely-used finite element schemes for computing the numerical solutions of laminar incompressible Navier-Stokes. In these formulations, the Newton-Raphson scheme is employed to solve the nonlinearity in the convection term. One fundamental issue with this approach is the computational cost incurred in the Newton-Raphson iterations at every load/time step. In this paper, we present an iteration-free mixed finite element formulation for incompressible Navier-Stokes that preserves second-order temporal accuracy of the generalised-alpha and related schemes for both velocity and pressure fields. First, we demonstrate the second-order temporal accuracy using numerical convergence studies for an example with a manufactured solution. Later, we assess the accuracy and the computational benefits of the proposed scheme by studying the benchmark example of flow past a fixed circular cylinder. Towards showcasing the applicability of the proposed technique in a wider context, the inf-sup stable P2-P1 pair for the formulation without stabilisation is also considered. Finally, the resulting benefits of using the proposed scheme for fluid-structure interaction problems is illustrated using two benchmark examples in fluid-flexible structure interaction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源