论文标题

使用基于电导的离散神经元网络的实时视网膜形态模拟器

A Real-Time Retinomorphic Simulator Using a Conductance-Based Discrete Neuronal Network

论文作者

Eshraghian, Jason K., Baek, Seungbum, Thio, Wesley, Sandamirskaya, Yulia, Iu, Herbert H. C., Lu, Wei D.

论文摘要

我们提出了优化的基于电导的视网膜微电路模拟器,该模拟器将光刺激转化为一系列通过照片转导的分级和尖峰动作电位。我们根据单个室模型和形态现实的配方的整理使用离散的视网膜神经元块,并成功实现了生物学实时的模拟器。这是通过优化用于求解超过270个非线性普通微分方程和参数系统的数值方法来完成的。我们的模拟器包括隔室建模方面的最新进展,包括每个细胞的五个固有离子电流,同时确保实时性能,以实现光感受器杆和锥细胞的离子 - 电流和膜响应,即双极性和圆锥细胞,双极性和无链氨基细胞,后来连接的电气和化学合成细胞以及输出群体和输出群体和输出群体。它表现出动态的视网膜行为,例如尖峰频率适应,反弹激活,快速尖刺和亚阈值响应性。通过微分方程的系统调制了入射光感受器杆和锥细胞的光刺激,使用户能够在网络中的任何一点探测神经元反应。这与许多其他编码方案相反,这些方案更喜欢“黑色框”到尖峰火车输出的前面阶段。我们的模拟器可以提供开源,希望它能使神经科学家和机器学习从业人员更好地了解视网膜亚电路,视网膜细胞如何优化视觉信息的表示,并生成大量的生物学精确分级和尖峰响应的数据集。

We present an optimized conductance-based retina microcircuit simulator which transforms light stimuli into a series of graded and spiking action potentials through photo transduction. We use discrete retinal neuron blocks based on a collation of single-compartment models and morphologically realistic formulations, and successfully achieve a biologically real-time simulator. This is done by optimizing the numerical methods employed to solve the system of over 270 nonlinear ordinary differential equations and parameters. Our simulator includes some of the most recent advances in compartmental modeling to include five intrinsic ion currents of each cell whilst ensuring real-time performance, in attaining the ion-current and membrane responses of the photoreceptor rod and cone cells, the bipolar and amacrine cells, their laterally connected electrical and chemical synapses, and the output ganglion cell. It exhibits dynamical retinal behavior such as spike-frequency adaptation, rebound activation, fast-spiking, and subthreshold responsivity. Light stimuli incident at the photoreceptor rod and cone cells is modulated through the system of differential equations, enabling the user to probe the neuronal response at any point in the network. This is in contrast to many other retina encoding schemes which prefer to `black-box' the preceding stages to the spike train output. Our simulator is made available open source, with the hope that it will benefit neuroscientists and machine learning practitioners in better understanding the retina sub-circuitries, how retina cells optimize the representation of visual information, and in generating large datasets of biologically accurate graded and spiking responses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源