论文标题
一个新的交通工程软件框架:路径心脏和多径对剩余容量的影响
A New Software Framework for Traffic Engineering: Path Cardinality and the Effect of Multipath on Residual Capacity
论文作者
论文摘要
在本文中,我们提出了一个新的流量工程(TE)软件框架,以分析,配置和优化(借助线性编程求解器)一个用于服务提供的网络。开发的软件工具基于我们的新数据驱动工程方法,该方法分析了给定用户输入的大量网络配置数据。通过分析数据,然后在设计交通工程解决方案时可以在以后做出有效的决策。我们专注于三个知名的交通工程目标功能:最低成本路由(MCR),负载平衡(LB)和平均延迟(AD)。有了这个新工具,人们可以回答许多交通工程问题。例如,这三个目标函数之间有什么区别?目标函数对链接利用的影响是什么?相对于特定目标,有多少候选途径足以实现最佳或近乎临时性。这种新的软件工具使我们能够方便地执行各种实验,并可视化结果以进行性能分析。作为案例研究,本文提出了示例,这些示例回答了两个流量工程问题的问题:(1)获得从最佳解决方案中获得几%以内的解决方案需要多少路径,以及该数字是否针对任何网络大小固定? (2)单路/多路由路由的选择如何影响网络中的负载?对于第一个问题,事实证明,随着网络中的链接数量的增加,实现最优性所需的路径数量增加。
In this paper, we present a new traffic engineering (TE) software framework to analyze, configure, and optimize (with the aid of a linear programming solver) a network for service provisioning. The developed software tool is based on our new data-driven traffic engineering approach that analyzes a large volume of network configuration data generated given the user input. By analyzing the data, one can then make efficient decisions later when designing a traffic engineering solution. We focus on three well-known traffic engineering objective functions: minimum cost routing (MCR), load balancing (LB), and average delay (AD). With this new tool, one can answer numerous traffic engineering questions. For example, what are the differences among the three objective functions? What is the impact of an objective function on link utilization? How many candidate paths are enough to achieve optimality or near-optimality with respect to a specific objective. This new software tool allows us to conveniently perform various experiments and visualize the results for performance analysis. As case studies, this paper presents examples that answer the questions for two traffic engineering problems: (1) how many paths are required to obtain a solution that is within a few percent from the optimal solution and whether that number is fixed for any network size? (2) how the choice of single-path/multi-path routing affects the load in the network? For the first problem, it turns out that the number of paths needed to achieve optimality increases as the number of links in the network increases.