论文标题
原位形成多样化的超级收获系统
Forming Diverse Super-Earth Systems in Situ
论文作者
论文摘要
超级矿物质和迷你北极群在其成分和轨道特性上表现出巨大的多样性。它们的散装密度范围很大,从足够浓密的岩石到需要从挥发物到其体积的大量贡献的人。它们的轨道配置范围从紧凑的,圆形的多运输系统(如开普勒11号)到诸如我们太阳系的陆地行星等系统,具有较大的间距以及适度但显着的偏心率和相互倾向。在这里,我们研究了由于内部磁盘可用的固体量变化而导致的形成条件的连续性是否可以解释超过超地球观察到的轨道和成分特性的多样性,包括单个过渡和多个透射系统之间的明显二分法。我们通过巨大的冲击来模拟超级地球的原位形成,并与观察到的开普勒样品进行比较。我们发现,磁盘之间可用于原位形成的固体量的固有变化可以解释开普勒过境行星之间观察到的轨道和组成多样性。我们的仿真可以说明行星的轨道周期比,过境持续时间比和过境多样性的分布;单一比多过境行星的偏心率更高;较大行星的偏心较小;散射在大摩丁肌关系中,包括用TTV测得的质量的行星密度较低;以及每个系统中行星尺寸和间距的相似性。我们的发现支持这样的理论,即超收入和微型新持续性能之间的变化主要由不同的原位形成条件锁定,而不是通过随后的进化而随机出现。
Super-Earths and mini-Neptunes exhibit great diversity in their compositional and orbital properties. Their bulk densities span a large range, from those dense enough to be purely rocky to those needing a substantial contribution from volatiles to their volumes. Their orbital configurations range from compact, circular multi-transiting systems like Kepler-11 to systems like our Solar System's terrestrial planets with wider spacings and modest but significant eccentricities and mutual inclinations. Here we investigate whether a continuum of formation conditions resulting from variation in the amount of solids available in the inner disk can account for the diversity of orbital and compositional properties observed for super Earths, including the apparent dichotomy between single transiting and multiple transiting system. We simulate in situ formation of super-Earths via giant impacts and compare to the observed Kepler sample. We find that intrinsic variations among disks in the amount of solids available for in situ formation can account for the orbital and compositional diversity observed among Kepler's transiting planets. Our simulations can account for the planets' distributions of orbital period ratios, transit duration ratios, and transit multiplicity; higher eccentricities for single than multi transiting planets; smaller eccentricities for larger planets; scatter in the mass-radius relation, including lower densities for planets with masses measured with TTVs than RVs; and similarity in planets' sizes and spacings within each system. Our findings support the theory that variation among super-Earth and mini-Neptune properties is primarily locked in by different in situ formation conditions, rather than arising stochastically through subsequent evolution.