论文标题
基于Wurtzite纳米线的量子结构中的持续旋转纹理和电流
Persistent spin textures and currents in wurtzite nanowire-based quantum structures
论文作者
论文摘要
我们探讨了wurtzite半导体纳米线中电子的自旋和电荷特性,其中径向和轴向限制导致管状或环形量子结构。考虑到由Wurtzite晶格引起的自旋轨道相互作用以及径向电势梯度,我们在分析中得出相应的低维汉密尔顿人。事实证明,所得的管状自旋 - 轨道哈密顿量允许构建持续时间且对疾病稳健的旋转状态。我们发现这些特殊场景的特征是光导率谱中的独特特征,从而实现了明确的实验验证。在两种类型的量子结构中,我们讨论了发生的持续电荷和旋转电流对轴向磁场和费米能的依赖性,这些磁场和费米能显示了电子子带结构的清晰指纹。在这里,旋转的对称性在某些自旋电流张量成分的消失中显现出来。我们的分析描述将光学电导率和持续电流的独特特征与频段结构特征相关联,这些特征允许从测量中推导自旋轨道系数和其他频带参数。
We explore the spin and charge properties of electrons in wurtzite semiconductor nanowires where radial and axial confinement leads to tubular or ring-shaped quantum structures. Accounting for spin-orbit interaction induced by the wurtzite lattice as well as a radial potential gradient, we analytically derive the corresponding low-dimensional Hamiltonians. It is demonstrated that the resulting tubular spin-orbit Hamiltonian allows to construct spin states that are persistent in time and robust against disorder. We find that these special scenarios are characterized by distinctive features in the optical conductivity spectrum, which enable an unambiguous experimental verification. In both types of quantum structures, we discuss the dependence of the occurring persistent charge and spin currents on an axial magnetic field and Fermi energy which show clear fingerprints of the electronic subband structure. Here, the spin-preserving symmetries become manifest in the vanishing of certain spin current tensor components. Our analytic description relates the distinctive features of the optical conductivity and persistent currents to bandstructure characteristics which allows to deduce spin-orbit coefficients and other band parameters from measurements.