论文标题
可移动的椭圆方程式的可移动集,并具有musielak-orlicz增长
Removable sets in elliptic equations with Musielak-Orlicz growth
论文作者
论文摘要
我们用内在的Hausdorff度量来表征Hölder连续解决方案的可移动套件的大小,这些解决方案具有musielak-orlicz生长的椭圆方程。在一般情况下,我们提供了一种优雅的度量形式,该措施捕获(作为特殊情况)的经典结果,略微完善了为可变指数和双相空间中规定的问题提供的问题,并基本上改善了Orlicz情况下的已知措施。
We characterize, in the terms of intrinsic Hausdorff measures, the size of~removable sets for Hölder continuous solutions to elliptic equations with Musielak-Orlicz growth. In the general case we provide an elegant form of the measure that captures -- as special cases -- the classical results, slightly refines the ones provided for problems stated in the variable exponent and double phase spaces and essentially improves the known one in the Orlicz case.