论文标题
通过后载植入在固态主机中掺杂剂的多功能直接写作
Versatile Direct Writing of Dopants in a Solid State Host Through Recoil Implantation
论文作者
论文摘要
在纳米级的修改材料特性对于纳米电子,纳米光学和量子信息的设备至关重要。例如,宽带隙材料中的光学活性缺陷是实现量子技术的重要成分。然而,通过直接离子植入引入原子缺陷仍然是一个基本挑战。本文中,我们通过利用最基本的物理原理之一 - 动量转移来建立一种通用材料掺杂的方法。作为概念的证明,我们通过从XE+聚焦离子束(FIB)转移到钻石的动量转移到钻石的薄膜中,将发射器的阵列直接转移到钻石中,并预先沉积到钻石表面上。我们最终表明,我们称之为掺杂的技术可以产生定位在目标表面前5 nm的超刺掺杂剂剖面,并使用它来实现低于50 nm的横向分辨率。敲入掺杂方法具有成本效益,但功能强大,功能强大且普遍适用于诸如原子较薄材料的电子和磁性掺杂以及半导体设备的近表面状态的应用。
Modifying material properties at the nanoscale is crucially important for devices in nanoelectronics, nanophotonics and quantum information. Optically active defects in wide band gap materials, for instance, are vital constituents for the realisation of quantum technologies. Yet, the introduction of atomic defects through direct ion implantation remains a fundamental challenge. Herein, we establish a universal method for material doping by exploiting one of the most fundamental principles of physics - momentum transfer. As a proof of concept, we direct-write arrays of emitters into diamond via momentum transfer from a Xe+ focused ion beam (FIB) to thin films of the group IV dopants pre-deposited onto a diamond surface. We conclusively show that the technique, which we term knock-on doping, can yield ultra-shallow dopant profiles localized to the top 5 nm of the target surface, and use it to achieve sub-50 nm lateral resolution. The knock-on doping method is cost-effective, yet very versatile, powerful and universally suitable for applications such as electronic and magnetic doping of atomically thin materials and engineering of near-surface states of semiconductor devices.