论文标题

利用张量的内核减少目标功能不匹配的深度聚类不匹配

Leveraging tensor kernels to reduce objective function mismatch in deep clustering

论文作者

Trosten, Daniel J., Løkse, Sigurd, Jenssen, Robert, Kampffmeyer, Michael

论文摘要

当一个目标的优化对另一个目标的优化产生负面影响时,目标函数不匹配(OFM)发生。在这项工作中,我们在深度聚类中研究了M,并发现流行的基于自动装饰的深度聚类方法可以导致降低聚类性能,以及重建和聚类目标之间的大量OFM。为了减少不匹配,在维护辅助目标的结构保存属性的同时,我们提出了一组新的辅助目标,以进行深度聚类,称为无监督的伴侣目标(UCOS)。 UCO依靠内核函数来在网络中的中间表示方面制定聚类目标。通常,除特征维度外,中间表示还可以包括其他维度,例如空间或时间。因此,我们认为,矢量化和应用向量内核的天真方法对于此类表示是次优的,因为它忽略了其他维度中所包含的信息。为了解决这个缺点,我们为UCO配备了结构探索张量核,该张量核设计为任意等级的张量。因此,UCO可以适应广泛的网络体系结构。我们还提出了一种基于回归的新型OFM的量度,使我们能够准确量化训练过程中观察到的OFM量。我们的实验表明,与类似的基于自动编码器的模型相比,UCO和主要聚类目标之间的OFM较低。此外,我们说明UCO与基于自动编码器的方法相比,改善了模型的聚类性能。我们的实验代码可在https://github.com/danieltrosten/tk-uco上找到。

Objective Function Mismatch (OFM) occurs when the optimization of one objective has a negative impact on the optimization of another objective. In this work we study OFM in deep clustering, and find that the popular autoencoder-based approach to deep clustering can lead to both reduced clustering performance, and a significant amount of OFM between the reconstruction and clustering objectives. To reduce the mismatch, while maintaining the structure-preserving property of an auxiliary objective, we propose a set of new auxiliary objectives for deep clustering, referred to as the Unsupervised Companion Objectives (UCOs). The UCOs rely on a kernel function to formulate a clustering objective on intermediate representations in the network. Generally, intermediate representations can include other dimensions, for instance spatial or temporal, in addition to the feature dimension. We therefore argue that the naïve approach of vectorizing and applying a vector kernel is suboptimal for such representations, as it ignores the information contained in the other dimensions. To address this drawback, we equip the UCOs with structure-exploiting tensor kernels, designed for tensors of arbitrary rank. The UCOs can thus be adapted to a broad class of network architectures. We also propose a novel, regression-based measure of OFM, allowing us to accurately quantify the amount of OFM observed during training. Our experiments show that the OFM between the UCOs and the main clustering objective is lower, compared to a similar autoencoder-based model. Further, we illustrate that the UCOs improve the clustering performance of the model, in contrast to the autoencoder-based approach. The code for our experiments is available at https://github.com/danieltrosten/tk-uco.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源