论文标题
用固定的巅峰集合枚举排列的公式
A formula for enumerating permutations with a fixed pinnacle set
论文作者
论文摘要
2017年,戴维斯(Davis),纳尔逊(Nelson),彼得森(Nelson),彼得森(Petersen)和特纳(Tenner)率先研究了一组排列的研究,并询问是否存在一类操作,这些操作适用于$ \ mathfrak {s} _n $中的排列,可以生产任何其他带有相同顶峰的置换率,也可以生产任何其他置换。在本文中,我们调整了FOATA和Strehl定义的组动作,以提供一种使用给定峰集组生成所有排列的方法。由此,我们提供了一个封闭的非恢复公式,并用给定的巅峰集合列出置换。因此回答了戴维斯,纳尔逊,彼得森和特纳提出的问题。
In 2017 Davis, Nelson, Petersen, and Tenner pioneered the study of pinnacle sets of permutations and asked whether there exists a class of operations, which applied to a permutation in $\mathfrak{S}_n$, can produce any other permutation with the same pinnacle set and no others. In this paper, we adapt a group action defined by Foata and Strehl to provide a way to generate all permutations with a given pinnacle set. From this we give a closed non-recursive formula enumerating permutations with a given pinnacle set. Thus answering a question posed by Davis, Nelson, Petersen, and Tenner.