论文标题
通过真实的狂物理论的Lubin-Tate光谱模型
Models of Lubin-Tate spectra via Real bordism theory
论文作者
论文摘要
我们研究了某些配备了循环级别订单量$ 2 $的正式小组法律。我们构造$ c_ {2^n} $ - lubin-tate Spectra $ e_h $在高度上的e e e $ e_h $的均等型型$ h = 2^{n-1} m $,并给出$ c_ {2^n} $的明确公式。我们的建筑利用与真实的bordism理论规范$ MU _ {\ MATHBB {r}} $相关的均等的正式群体法律,我们的工作研究了$ MU _ {\ Mathbb {r}} $的Hill-Hopkins-Ravenel规范的正式小组法律的高度。
We study certain formal group laws equipped with an action of the cyclic group of order a power of $2$. We construct $C_{2^n}$-equivariant Real oriented models of Lubin-Tate spectra $E_h$ at heights $h=2^{n-1}m$ and give explicit formulas of the $C_{2^n}$-action on their coefficient rings. Our construction utilizes equivariant formal group laws associated with the norms of the Real bordism theory $MU_{\mathbb{R}}$, and our work examines the height of the formal group laws of the Hill-Hopkins-Ravenel norms of $MU_{\mathbb{R}}$.