论文标题
Skyrmion动力学和拓扑分类对周期性障碍阵列
Skyrmion Dynamics and Topological Sorting on Periodic Obstacle Arrays
论文作者
论文摘要
我们在直流驱动器下与各种障碍物相互作用的天空驱动器检查,以实现各种障碍物的大小和阻尼。当沿固定方向施加驱动器时,我们发现天空最初是在驱动方向引导的,但由于马格努斯力而导致横向移动到驱动器。 Skyrmion Hall角度指示了运动方向和驱动方向之间的差异,随着驱动器的驱动而增加,这是由于Skyrmion运动锁定到障碍物阵列的特定对称方向的一系列量化步骤。在这些步骤上,天空与整数数量的障碍物相撞,以创建一个周期性的运动。不同锁定步骤之间的过渡与速度曲线中的跳跃或倾角相关联。在某些方案中,Skyrmion Hall角实际上高于在没有障碍物的情况下会出现的内在Skyrmion Hall角度。在零阻尼的极限下,Skyrmion Hall角度为90 $^\ Circ $,我们发现它随着阻尼增加而减小。对于集体制度中的多种相互作用的天际物种,我们发现在低驱动器上堵塞了行为,而不同的天际物种强烈耦合并沿相同的方向移动。随着驱动量的增加,物种将其脱离,并且每个物种都可以锁定到障碍晶格的不同对称方向,从而可以类似于用来分割不同种类的胶体颗粒在二维障碍物阵列上移动的粒子分类方法进行拓扑排序。
We examine skyrmions under a dc drive interacting with a square array of obstacles for varied obstacle size and damping. When the drive is applied in a fixed direction, we find that the skyrmions are initially guided in the drive direction but also move transverse to the drive due to the Magnus force. The skyrmion Hall angle, which indicates the difference between the skyrmion direction of motion and the drive direction, increases with drive in a series of quantized steps as a result of the locking of the skyrmion motion to specific symmetry directions of the obstacle array. On these steps, the skyrmions collide with an integer number of obstacles to create a periodic motion. The transitions between the different locking steps are associated with jumps or dips in the velocity-force curves. In some regimes, the skyrmion Hall angle is actually higher than the intrinsic skyrmion Hall angle that would appear in the absence of obstacles. In the limit of zero damping, the skyrmion Hall angle is 90$^\circ$, and we find that it decreases as the damping increases. For multiple interacting skyrmion species in the collective regime, we find jammed behavior at low drives where the different skyrmion species are strongly coupled and move in the same direction. As the drive increases, the species decouple and each can lock to a different symmetry direction of the obstacle lattice, making it possible to perform topological sorting in analogy to the particle sorting methods used to fractionate different species of colloidal particles moving over two-dimensional obstacle arrays.