论文标题
相对论粘性水动力学的扰动解决方案,用于纵向扩展火球
Perturbation solutions of relativistic viscous hydrodynamics for longitudinally expanding fireballs
论文作者
论文摘要
Navier-Stokes理论和以色列 - 史图尔特理论研究了相对论粘性水动力学的解决方案。粘性流体的能量和EULER保护方程是在纵向膨胀效果的Rindler坐标中得出的。在扰动假设下,提出了用于纳维尔 - 斯托克斯近似和数值解的分析扰动溶液。提出了纵向膨胀框架中剪切粘性效应和纵向加速度效应的温度演化,并提出温度曲线在林德勒坐标中显示了对称的高斯形状。此外,在存在纵向加速度的扩展效果的情况下,将以色列 - 斯图尔特近似值的结果与Bjorken和Navier-Stokes近似的结果进行了比较,并且与Navier-Stokes Theories的结果相比,它给出了良好的描述。
The solutions of relativistic viscous hydrodynamics for longitudinal expanding fireballs is investigated with the Navier-Stokes theory and Israel-Stewart theory. The energy and Euler conservation equations for the viscous fluid are derived in Rindler coordinates with the longitudinal expansion effect is small. Under the perturbation assumption, an analytical perturbation solution for the Navier-Stokes approximation and numerical solutions for the Israel-Stewart approximation are presented. The temperature evolution with both shear viscous effect and longitudinal acceleration effect in the longitudinal expanding framework are presented and specifically temperature profile shows symmetry Gaussian shape in the Rindler coordinates. In addition, in the presence of the longitudinal acceleration expanding effect, the results of the Israel-Stewart approximation are compared to the results from Bjorken and Navier-Stokes approximation, and it gives a good description than the Navier-Stokes theories results at the early stages of evolution.