论文标题

通过机器人实验和机器学习的自主发现电池电解质

Autonomous discovery of battery electrolytes with robotic experimentation and machine-learning

论文作者

Dave, Adarsh, Mitchell, Jared, Kandasamy, Kirthevasan, Burke, Sven, Paria, Biswajit, Poczos, Barnabas, Whitacre, Jay, Viswanathan, Venkatasubramanian

论文摘要

电池的创新需要数年才能制定和商业化,需要在设计和优化阶段进行广泛的实验。我们通过直接集成到机器人测试台的黑盒优化算法来实现电池电解质的设计和选择。我们在这里报告了该实验在没有人工干预的情况下完全指导了该实验的新型电池电解液。由于最近趋向于高性能电池的超浓缩水性电解质的趋势,我们利用蜻蜓(一种贝叶斯机器学习软件包)来搜索常用的锂和钠盐的混合物,用于具有宽带电解质的超浓度的水解电解质,并具有广泛的电化学稳定性窗口。蜻蜓自主管理机器人测试台,建议电解质设计实时测试和接收实验反馈。在具有数百万个潜在候选者的四维设计空间的40小时连续实验中,蜻蜓发现了一种新型的混合氨基水性钠电解质,具有更宽的电化学稳定性窗口,而不是最先进的钠电解质。人类指导的设计过程可能错过了此最佳电解质。该结果证明了将机器人技术与机器学习的可能性迅速和自主发现新型电池材料的可能性。

Innovations in batteries take years to formulate and commercialize, requiring extensive experimentation during the design and optimization phases. We approached the design and selection of a battery electrolyte through a black-box optimization algorithm directly integrated into a robotic test-stand. We report here the discovery of a novel battery electrolyte by this experiment completely guided by the machine-learning software without human intervention. Motivated by the recent trend toward super-concentrated aqueous electrolytes for high-performance batteries, we utilize Dragonfly - a Bayesian machine-learning software package - to search mixtures of commonly used lithium and sodium salts for super-concentrated aqueous electrolytes with wide electrochemical stability windows. Dragonfly autonomously managed the robotic test-stand, recommending electrolyte designs to test and receiving experimental feedback in real time. In 40 hours of continuous experimentation over a four-dimensional design space with millions of potential candidates, Dragonfly discovered a novel, mixed-anion aqueous sodium electrolyte with a wider electrochemical stability window than state-of-the-art sodium electrolyte. A human-guided design process may have missed this optimal electrolyte. This result demonstrates the possibility of integrating robotics with machine-learning to rapidly and autonomously discover novel battery materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源