论文标题
(2+1)d骨拓扑绝缘子的可解决的晶格模型
Solvable lattice model for (2+1)D bosonic topological insulator
论文作者
论文摘要
我们为(2+1)d骨器拓扑绝缘子构建了一个可知的通勤投影仪哈密顿量,这是受U(1)和时间倒数$ \ MATHBB {z} _2^t^t $对称对称性的对称性拓扑(SPT)阶段之一,其中对称组是u(1)$(1)$ \ rtime $ \ rtime $该模型构建基于$ e _ {\ infty} $的装饰域壁解释 - 一个频谱序列的频谱序列的页面,该频谱序列对所讨论的SPT阶段进行了分类。当系统被放置在半偶然的圆柱体上时,我们通过显示kramers double的出现来证明模型的非平凡性在简单的边界理论中讨论了在边界上匹配的对称性。
We construct an exactly sovable commuting projector Hamiltonian for (2+1)D bosonic topological insulator which is one of symmetry-protected topological (SPT) phases protected by U(1) and time-reversal $\mathbb{Z}_2^T$ symmetry, where the symmetry group is U(1)$\rtimes\mathbb{Z}_2^T$. The model construction is based on the decorated domain-wall interpretation of the $E_{\infty}$-page of a spectral sequence of a cobordism group that classifies the SPT phases in question. We demonstrate nontriviality of the model by showing an emergence of a Kramers doublet when the system is put on a semi-infinite cylinder $(-\infty,0]\times S^1$ with an inserted $π$-flux. The surface anomaly manifests itself as a non-onsite representation of the U(1)$\rtimes\mathbb{Z}_2^T$ symmetry. Anomaly matching on a boundary is discussed within a simple boundary theory.