论文标题

关于潮汐对Trappist-1系统的潮汐对潮汐的影响

On the impact of tides on the transit-timing fits to the TRAPPIST-1 system

论文作者

Bolmont, Emeline, Demory, Brice-Olivier, Blanco-Cuaresma, Sergi, Agol, Eric, Grimm, Simon L., Auclair-Desrotour, Pierre, Selsis, Franck, Leleu, Adrien

论文摘要

过境时序变化或TTV可以是限制多星际系统质量和偏心率的非常有效的方法。 trappist-1 TTV的最新测量导致对行星的质量进行估计,从而估计其密度。最近两年中获得的数据分析的最新TTV分析分别使Trappist-1b和C的质量分别增加了34%和13%。在迄今为止的大多数研究中,牛顿N体模型用于适合行星的质量,而有时会考虑一般相对论。使用Posidonius n-body代码,我们表明,在Trappist-1系统的情况下,非牛顿效应也可能与正确对系统的动力学和所得TTVS进行建模有关。特别是,使用潮汐爱的标准值$ k_2 $(占潮汐变形的核算)和流体爱数$ k_ {2f} $(对旋转扁平化的解释)会导致TRAPPIST-1B和C的TTV差异,类似于一般相对性引起的差异。我们还表明,放松潮汐爱的价值$ k_2 $和流体爱情编号$ k_ {2f} $可以导致TTVS在$ 3-4 $ - 年的时间表上的差异高达几个10〜s,这是一个潜在的可观察到的水平。对于具有液态海洋的行星,可以实现达到TTV的可观察水平所需的高价值,如果检测到,则可以将其解释为Trappist-1B和Trappist-1C可能具有液态magma海洋的迹象。对于Trappist-1和类似系统,适合TTV的模型应可能说明一般相对性,对于行星的潮汐变形,对于行星的旋转变形,在较小程度上,对于恒星的旋转变形,这将累加到抗链球策略中的7x2+1 = 15个额外的免费参数。

Transit Timing Variations, or TTVs, can be a very efficient way of constraining masses and eccentricities of multi-planet systems. Recent measurements of the TTVs of TRAPPIST-1 led to an estimate of the masses of the planets, enabling an estimate of their densities. A recent TTV analysis using data obtained in the past two years yields a 34% and 13% increase in mass for TRAPPIST-1b and c, respectively. In most studies to date, a Newtonian N-body model is used to fit the masses of the planets, while sometimes general relativity is accounted for. Using the Posidonius N-body code, we show that in the case of the TRAPPIST-1 system, non-Newtonian effects might be also relevant to correctly model the dynamics of the system and the resulting TTVs. In particular, using standard values of the tidal Love number $k_2$ (accounting for the tidal deformation) and the fluid Love number $k_{2f}$ (accounting for the rotational flattening) leads to differences in the TTVs of TRAPPIST-1b and c similar to the differences caused by general relativity. We also show that relaxing the values of tidal Love number $k_2$ and the fluid Love number $k_{2f}$ can lead to TTVs which differ by as much as a few 10~s on a $3-4$-year timescale, which is a potentially observable level. The high values of the Love numbers needed to reach observable levels for the TTVs could be achieved for planets with a liquid ocean, which, if detected, might then be interpreted as a sign that TRAPPIST-1b and TRAPPIST-1c could have a liquid magma ocean. For TRAPPIST-1 and similar systems, the models to fit the TTVs should potentially account for general relativity, for the tidal deformation of the planets, for the rotational deformation of the planets and, to a lesser extent, for the rotational deformation of the star, which would add up to 7x2+1 = 15 additional free parameters in the case of TRAPPIST-1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源