论文标题
使用折现性能标准的相干量子LQG控制合成的同型方法
A homotopy approach to coherent quantum LQG control synthesis using discounted performance criteria
论文作者
论文摘要
本文涉及线性 - 季度高斯(LQG)控制植物和连贯(无测量)控制器的现场介导的反馈连接的控制。植物和控制器都是由线性量子随机微分方程控制的多模量子谐波振荡器。控制目标是使闭环系统内部稳定,并最大程度地减少涉及植物变量和控制器输出的无限 - 摩恩二次成本,但要受到量子物理性(PR)约束的约束。这个连贯的量子LQG(CQLQG)控制问题已经具有十多年的积极研究兴趣,并没有以分离原理和独立的Riccati方程形式接受解决方案,并以其经典的对应物而闻名。我们将变异技术应用于一个由有效的时间范围来参数的折扣CQLQG控制问题的家族。这产生了同型算法,该算法用PR(但不一定稳定)控制器初始化,并针对局部最佳稳定控制器,以针对极限的原始问题。
This paper is concerned with linear-quadratic-Gaussian (LQG) control for a field-mediated feedback connection of a plant and a coherent (measurement-free) controller. Both the plant and the controller are multimode open quantum harmonic oscillators governed by linear quantum stochastic differential equations. The control objective is to make the closed-loop system internally stable and to minimize the infinite-horizon quadratic cost involving the plant variables and the controller output subject to quantum physical realizability (PR) constraints. This coherent quantum LQG (CQLQG) control problem, which has been of active research interest for over ten years, does not admit a solution in the form of separation principle and independent Riccati equations known for its classical counterpart. We apply variational techniques to a family of discounted CQLQG control problems parameterized by an effective time horizon. This gives rise to a homotopy algorithm, which is initialized with a PR (but not necessarily stabilizing) controller and aims at a locally optimal stabilizing controller for the original problem in the limit.