论文标题

VIWI视觉辅助MMWave光束跟踪:数据集,任务和基线解决方案

ViWi Vision-Aided mmWave Beam Tracking: Dataset, Task, and Baseline Solutions

论文作者

Alrabeiah, Muhammad, Booth, Jayden, Hredzak, Andrew, Alkhateeb, Ahmed

论文摘要

视觉辅助的无线通信是由深度学习和计算机视觉的最新进展以及对毫米波(MMWave)和Terahertz Systems中视线线链路的日益依赖而动机的。通过利用视觉,这个新的研究方向可实现一系列有趣的新功能,例如视觉辅助的mmwave梁和阻塞预测,主动交接和资源分配等。这些功能具有可靠的支持高度移动应用程序的潜力,例如MMWave和Terahertz Systems中的车辆/无人机通信以及无线虚拟/增强现实。但是,研究这些有趣的应用需要开发特殊的数据集和机器学习任务。基于视觉 - 网络(VIWI)数据集生成框架[1],本文开发了一个高级且现实的方案/数据集,该方案/数据集具有多个基站,移动用户和丰富的动态。该论文由该数据集启用,定义了视觉无线MMWave光束跟踪任务(VIWI-BT),并提出了一个基线解决方案,该解决方案可以为未来的VIWI-BT算法提供初始基准。

Vision-aided wireless communication is motivated by the recent advances in deep learning and computer vision as well as the increasing dependence on line-of-sight links in millimeter wave (mmWave) and terahertz systems. By leveraging vision, this new research direction enables an interesting set of new capabilities such as vision-aided mmWave beam and blockage prediction, proactive hand-off, and resource allocation among others. These capabilities have the potential of reliably supporting highly-mobile applications such as vehicular/drone communications and wireless virtual/augmented reality in mmWave and terahertz systems. Investigating these interesting applications, however, requires the development of special dataset and machine learning tasks. Based on the Vision-Wireless (ViWi) dataset generation framework [1], this paper develops an advanced and realistic scenario/dataset that features multiple base stations, mobile users, and rich dynamics. Enabled by this dataset, the paper defines the vision-wireless mmWave beam tracking task (ViWi-BT) and proposes a baseline solution that can provide an initial benchmark for the future ViWi-BT algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源