论文标题
对流和重对对流的重量和旋转:模拟和旋转混合长度理论
Convection with Misaligned Gravity and Rotation: Simulations and Rotating Mixing Length Theory
论文作者
论文摘要
我们使用两个互补设置提出数值模拟,以在三维笛卡尔几何形状中旋转Boussinesq热对流,并具有未对准的重力和旋转向量。该模型代表恒星或行星对流区域的非极纬度的一个小区域。我们研究了旋转对不同纬度对流的大量特性的影响,重点是确定热通量与温度梯度之间的关系。我们表明,可以使用旋转混合长度理论(RMLT)来解释我们的结果。最简单的RMLT版本(由于Stevenson)考虑了传输最多热量的单个模式。这在解释我们的结果方面非常有效,但是与这些预测(在温度梯度的约30美元\%$)中有系统地不同。我们开发了RMLT的更详细的处理方法,其中包括多种模式提供的运输,我们表明这说明了大多数系统的差异。我们还表明,在我们的模拟中产生了对流生成的区域流和子午循环,它们的性质在很大程度上取决于盒子的尺寸。这些流也会影响热传输,这导致在某些纬度地区偏离RMLT。但是,我们发现多模式理论的理论预测是中层温度梯度,根平方(RMS)垂直速度,RMS温度波动以及不同纬度的热传输的空间光谱,这与我们的数字结果相当良好,当时是在不同的纬度上的空间谱。
We present numerical simulations, using two complementary setups, of rotating Boussinesq thermal convection in a three-dimensional Cartesian geometry with misaligned gravity and rotation vectors. This model represents a small region at a non-polar latitude in the convection zone of a star or planet. We investigate the effects of rotation on the bulk properties of convection at different latitudes, focusing on determining the relation between the heat flux and temperature gradient. We show that our results may be interpreted using rotating mixing length theory (RMLT). The simplest version of RMLT (due to Stevenson) considers the single mode that transports the most heat. This works reasonably well in explaining our results, but there is a systematic departure from these predictions (up to approximately $30\%$ in the temperature gradient) at mid-latitudes. We develop a more detailed treatment of RMLT that includes the transport afforded by multiple modes, and we show that this accounts for most of the systematic differences. We also show that convectively-generated zonal flows and meridional circulations are produced in our simulations, and that their properties depend strongly on the dimensions of the box. These flows also affect the heat transport, contributing to departures from RMLT at some latitudes. However, we find the theoretical predictions of the multi-mode theory for the mid-layer temperature gradient, the root-mean-square (RMS) vertical velocity, the RMS temperature fluctuation, and the spatial spectrum of the heat transport at different latitudes, are all in reasonably good agreement with our numerical results when zonal flows are small.