论文标题
3D形状学习的连续测量卷积
Continuous Geodesic Convolutions for Learning on 3D Shapes
论文作者
论文摘要
非刚性形状的几何处理基于描述符的大多数方法都取决于手工制作的描述符。最近,已经显示出基于学习的技术有效,从而实现了各种任务。但是,即使这些方法原则上可以直接在原始数据上工作,但大多数方法仍然依赖于输入层的手工制作的描述符。在这项工作中,我们希望挑战这种做法,并使用神经网络直接从RAW网格中学习描述符。为此,我们将两个模块引入我们的神经架构。第一个是用于明确使功能不变到刚性转换的本地参考框架(LRF)。第二个是连续卷积内核,可为采样提供鲁棒性。我们使用两个基石任务:形状匹配和人体部位细分,展示了我们提出的网络在学习原始网格上的功效。我们的结果表明,使用手工制作的描述符的基线方法优于基线方法。
The majority of descriptor-based methods for geometric processing of non-rigid shape rely on hand-crafted descriptors. Recently, learning-based techniques have been shown effective, achieving state-of-the-art results in a variety of tasks. Yet, even though these methods can in principle work directly on raw data, most methods still rely on hand-crafted descriptors at the input layer. In this work, we wish to challenge this practice and use a neural network to learn descriptors directly from the raw mesh. To this end, we introduce two modules into our neural architecture. The first is a local reference frame (LRF) used to explicitly make the features invariant to rigid transformations. The second is continuous convolution kernels that provide robustness to sampling. We show the efficacy of our proposed network in learning on raw meshes using two cornerstone tasks: shape matching, and human body parts segmentation. Our results show superior results over baseline methods that use hand-crafted descriptors.