论文标题
用仪器变量估算最佳治疗规则:部分识别学习方法
Estimating Optimal Treatment Rules with an Instrumental Variable: A Partial Identification Learning Approach
论文作者
论文摘要
个性化的治疗规则(ITR)被认为是提供更好政策干预措施的有前途的食谱。最佳ITR估计问题中的一种关键要素是估算受试者的协变量信息的平均治疗效应,这在观察性研究中通常在观察性研究中构成挑战,这是由于普遍关注了无法衡量的混杂问题。仪器变量(IVS)是广泛使用的工具,可以在治疗和结果之间存在无法衡量的混淆时推断治疗效果。在这项工作中,我们提出了一个一般框架,即当允许有效的IV仅部分识别治疗效果时,可以解决最佳ITR估计问题。我们介绍了一种新颖的最佳概念,称为“ IV-典型性”。如果治疗规则可最大程度地减少相对于推定的IV和IV识别假设的最大风险,则认为这是IV最佳的。我们得出了一个iv-最佳规则的风险,该规则在静脉输液中具有有利的概括性能时会照亮。我们提出了一种基于分类的统计学习方法,该方法估算了这种静脉注射最佳规则,设计计算算法,并证明了理论保证。我们通过广泛的模拟将我们提出的方法与流行的结果加权学习(OWL)方法进行了对比,并将我们的方法应用于研究,哪些母亲将受益于旅行,从而在具有高水平新生儿重症监护病房的医院送达过早的婴儿。
Individualized treatment rules (ITRs) are considered a promising recipe to deliver better policy interventions. One key ingredient in optimal ITR estimation problems is to estimate the average treatment effect conditional on a subject's covariate information, which is often challenging in observational studies due to the universal concern of unmeasured confounding. Instrumental variables (IVs) are widely-used tools to infer the treatment effect when there is unmeasured confounding between the treatment and outcome. In this work, we propose a general framework of approaching the optimal ITR estimation problem when a valid IV is allowed to only partially identify the treatment effect. We introduce a novel notion of optimality called "IV-optimality". A treatment rule is said to be IV-optimal if it minimizes the maximum risk with respect to the putative IV and the set of IV identification assumptions. We derive a bound on the risk of an IV-optimal rule that illuminates when an IV-optimal rule has favorable generalization performance. We propose a classification-based statistical learning method that estimates such an IV-optimal rule, design computationally-efficient algorithms, and prove theoretical guarantees. We contrast our proposed method to the popular outcome weighted learning (OWL) approach via extensive simulations, and apply our method to study which mothers would benefit from traveling to deliver their premature babies at hospitals with high level neonatal intensive care units.