论文标题

不对称的自由空间和规范不对称

Asymmetric free spaces and canonical asymmetrizations

论文作者

Daniilidis, Aris, Sepulcre, Juan Matías, Venegas, M Francisco

论文摘要

类似于戈德罗伊 - 卡尔顿(Godefroy-Kalton)的公制空间的结构允许以规范的方式嵌入每个准米度空间$(x,d)$中,以一种不对称的规范空间$ \ mathcal {f} _a(x,x,d)$(其quasi-metric-metric-metric-metric免费空间,也称为免费的空间)。准 - 金属自由空间满足通用性能(半lipschitz函数的线性化)。 The (conic) dual of $\mathcal{F}_a(X,d)$ coincides with the nonlinear asymmetric dual of $(X,d)$, that is, the space $\mathrm{SLip}_0(X,d)$ of semi-Lipschitz functions on $(X,d)$, vanishing at a base point.特别是,对于公制空间$(x,d)$,上述构造可产生通常的自由空间。另一方面,每个度量空间$(x,d)$自然而然地继承了一个规范的不对称化,来自其自由空间$ \ Mathcal {f}(x)$。这引起了准米特空间$(x,d _+)$和不对称的免费空间$ \ MATHCAL {f} _a(x,d _+)$。后者的对称性与原始自由空间$ \ Mathcal {f}(x)$是同构。用明确的例子说明了这项工作的结果。

A construction analogous to that of Godefroy-Kalton for metric spaces allows to embed isometrically, in a canonical way, every quasi-metric space $(X,d)$ to an asymmetric normed space $\mathcal{F}_a(X,d)$ (its quasi-metric free space, also called asymmetric free space or semi-Lipschitz free space). The quasi-metric free space satisfies a universal property (linearization of semi-Lipschitz functions). The (conic) dual of $\mathcal{F}_a(X,d)$ coincides with the nonlinear asymmetric dual of $(X,d)$, that is, the space $\mathrm{SLip}_0(X,d)$ of semi-Lipschitz functions on $(X,d)$, vanishing at a base point. In particular, for the case of a metric space $(X,D)$, the above construction yields its usual free space. On the other hand, every metric space $(X,D)$ inherits naturally a canonical asymmetrization coming from its free space $\mathcal{F}(X)$. This gives rise to a quasi-metric space $(X,D_+)$ and an asymmetric free space $\mathcal{F}_a(X,D_+)$. The symmetrization of the latter is isomorphic to the original free space $\mathcal{F}(X)$. The results of this work are illustrated with explicit examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源