论文标题

径向SLE $ _ {\ infty} $的大偏差

Large deviations of radial SLE$_{\infty}$

论文作者

Ang, Morris, Park, Minjae, Wang, Yilin

论文摘要

我们在带有参数$κ\ rightarrow \ rightarrow \ infty $的单位磁盘上得出了径向schramm-loewner进化($ \ operatorname {sle} $)的大偏差原理。限制到时间间隔$ [0,1] $,良好的速率函数仅对由绝对连续的概率度量驱动的某个家族的loewner链,$ \ {ϕ_t^2(ζ)\,dζ\} _ {t \} _ {t _ {t \ in [0,1]在[0,1]} $ in [0,1]} $ in [0,1] | ϕ_t'|^2/2 \,dζ\,dt $。我们的证明依赖于大偏差原理,用于唐斯克和瓦拉达汉的长期平均水平。

We derive the large deviation principle for radial Schramm-Loewner evolution ($\operatorname{SLE}$) on the unit disk with parameter $κ\rightarrow \infty$. Restricting to the time interval $[0,1]$, the good rate function is finite only on a certain family of Loewner chains driven by absolutely continuous probability measures $\{ϕ_t^2 (ζ)\, dζ\}_{t \in [0,1]}$ on the unit circle and equals $\int_0^1 \int_{S^1} |ϕ_t'|^2/2\,dζ\,dt$. Our proof relies on the large deviation principle for the long-time average of the Brownian occupation measure by Donsker and Varadhan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源