论文标题
从天空中散射狄拉克电子的散射:稳健偏斜散射的出现
Scattering of Dirac electrons from a skyrmion: emergence of robust skew scattering
论文作者
论文摘要
我们从嵌入拓扑绝缘体(TI)顶表面的封闭磁性结构中研究电子散射。在结构之外,有一层均匀的铁磁绝缘子(FMI),导致狄拉克电子的阳性有效质量。内部的质量可以设计为负面,导致天际结构。结构的几何形状可以是圆形的或变形的,分别在经典的极限下导致可集成或混乱的动力学。对于圆形结构,可以通过分析计算相对论量子散射特性。对于变形的结构,我们开发了一种有效的数值方法,即多个多极方法,以求解散射波形。我们发现,可能会出现以强偏斜散射为特征的异常霍尔效应,这对于由于谐振模式而引起的结构变形非常可靠。在短(长)波长状态下,谐振模式表现为自由涡流(激发边缘状态)。共振状态的起源是在天空边界上大量狄拉克电子的自旋相因。此外,在短波长状态下,对于圆形的天空,大量的角动量通道有助于谐振模式。从原则上讲,在这种制度中,经典动力学是相关的,但是我们发现几何变形,即使是像导致完全发育混乱的严重的几何变形,对谐振模式的影响很小。谐振状态的涡流结构使天空电气``电荷''成为可能,从而使可行的运动可行。在长波长状态下,只有最低的角动量通道有助于谐振模式,从而使偏斜的散射急剧地定向。这些现象可能会根据动态天空找到信息存储和在Hall设备中的应用。
We study electron scattering from a closed magnetic structure embedded in the top surface of a topological insulator (TI). Outside the structure there is a uniform layer of ferromagnetic insulator (FMI), leading to a positive effective mass for the Dirac electrons. The mass inside can be engineered to be negative, leading to a skyrmion structure. The geometric shape of the structure can be circular or deformed, leading to integrable or chaotic dynamics, respectively, in the classical limit. For a circular structure, the relativistic quantum scattering characteristics can be calculated analytically. For a deformed structure, we develop an efficient numerical method, the multiple multipole method, to solve the scattering wavefunctions. We find that anomalous Hall effect as characterized by strong skew scattering can arise, which is robust against structural deformation due to the resonant modes. In the short (long) wavelength regime, the resonant modes manifest themselves as confined vortices (excited edge states). The origin of the resonant states is the spin phase factor of massive Dirac electrons at the skyrmion boundary. Further, in the short wavelength regime, for a circular skyrmion, a large number of angular momentum channels contribute to the resonant modes. In this regime, in principle, classical dynamics are relevant, but we find that geometric deformations, even those as severe as leading to fully developed chaos, have little effect on the resonant modes. The vortex structure of the resonant states makes it possible to electrically ``charge'' the skyrmion, rendering feasible to manipulate its motion electrically. In the long wavelength regime, only the lowest angular momentum channels contribute to the resonant modes, making the skew scattering sharply directional. These phenomena may find applications for information storage and in Hall devices based on dynamic skyrmion.