论文标题

Burgess在表格II:混合情况下评估的短字符总和的界限

Burgess bounds for short character sums evaluated at forms II: the mixed case

论文作者

Pierce, Lillian B.

论文摘要

这项工作证明了一个以$ n $尺寸为单位的简短混合字符总和的汉堡。可以在任何“可允许”形式中评估Prime导体$ Q $的非主要乘法特征,并且可以在任何实数的多项式中评估添加剂。当每个坐标中的总和至少为$β> 1/2-1/(2(n+1))$时,混合字符总和至少为$ q^β$时,所得的上限是不平凡的。这项工作利用了由于XU引起的乘法总和的最新分层,以及在任意维度中的vinogradov平均值定理的分辨率。

This work proves a Burgess bound for short mixed character sums in $n$ dimensions. The non-principal multiplicative character of prime conductor $q$ may be evaluated at any "admissible" form, and the additive character may be evaluated at any real-valued polynomial. The resulting upper bound for the mixed character sum is nontrivial when the length of the sum is at least $q^β$ with $β> 1/2 - 1/(2(n+1))$ in each coordinate. This work capitalizes on the recent stratification of multiplicative character sums due to Xu, and the resolution of the Vinogradov Mean Value Theorem in arbitrary dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源