论文标题
识别单层WSE $ _2 $中与缺陷相关的量子发射器
Identifying defect-related quantum emitters in monolayer WSe$_2$
论文作者
论文摘要
单层过渡金属二分法最近引起了极大的兴趣,因为嵌入单层中的量子点可以用作光学活跃的单个光子发射器。在这里,我们通过在低温下通过极化分辨和磁光谱法解释了这些量子发射器的重组机制。观察到单层钨剂(WSE $ _2 $)中的三种类型的与缺陷相关的量子发射器分别观察到不同的激子G系数为2.02、9.36和不可观察的Zeeman Shift。空间局部激子的各种磁反应强烈表明辐射重组源于缺陷诱导的能级,价和传导带之间的不同转变。此外,这三种发射器的不同g因子和零场分布强烈表明,单层中嵌入的量子点具有各种类型的局部激子的限制电势,从而导致电子孔交换相互作用与各种偶然型的范围。我们的工作进一步阐明了与缺陷相关的量子发射器的重组机制,并铺平了一种理解缺陷在原子较薄的半导体中单个光子发射器中的作用的方法。
Monolayer transition metal dichalcogenides have recently attracted great interests because the quantum dots embedded in monolayer can serve as optically active single photon emitters. Here, we provide an interpretation of the recombination mechanisms of these quantum emitters through polarization-resolved and magneto-optical spectroscopy at low temperature. Three types of defect-related quantum emitters in monolayer tungsten diselenide (WSe$_2$) are observed, with different exciton g factors of 2.02, 9.36 and unobservable Zeeman shift, respectively. The various magnetic response of the spatially localized excitons strongly indicate that the radiative recombination stems from the different transitions between defect-induced energy levels, valance and conduction bands. Furthermore, the different g factors and zero-field splittings of the three types of emitters strongly show that quantum dots embedded in monolayer have various types of confining potentials for localized excitons, resulting in electron-hole exchange interaction with a range of values in the presence of anisotropy. Our work further sheds light on the recombination mechanisms of defect-related quantum emitters and paves a way toward understanding the role of defects in single photon emitters in atomically thin semiconductors.