论文标题

通过概率深度学习,端到端学习密集的立体声匹配的不确定性估计

Uncertainty Estimation for End-To-End Learned Dense Stereo Matching via Probabilistic Deep Learning

论文作者

Mehltretter, Max

论文摘要

由于需要确定错误的差异分配的需要,近年来已经提出了各种不确定性和信心估计的构成密集立体声匹配的方法。与许多其他领域一样,尤其是基于深度学习的方法已经显示出令人信服的结果。但是,这些方法中的大多数仅对数据中包含的不确定性进行建模,同时忽略了使用的密集立体声匹配过程的不确定性。但是,如果训练数据的域与要处理的数据的域不同,则对后者进行建模特别有益。为此,在目前的工作中,概率深度学习的想法首次应用于密集的立体声匹配的任务。基于众所周知且常用的GC-NET结构,提出了一种新型的概率神经网络,以实现与比较矫正的立体图像对的关节深度和不确定性估计的任务。所提出的概率神经网络没有直接学习网络参数,而是学习一个概率分布,从中为每个预测采样参数。在同一图像对上的多个此类预测之间的变化允许近似模型不确定性。在三个不同的数据集上进行了广泛的评估,评估了估计深度和不确定性信息的质量。

Motivated by the need to identify erroneous disparity assignments, various approaches for uncertainty and confidence estimation of dense stereo matching have been presented in recent years. As in many other fields, especially deep learning based methods have shown convincing results. However, most of these methods only model the uncertainty contained in the data, while ignoring the uncertainty of the employed dense stereo matching procedure. Additionally modelling the latter, however, is particularly beneficial if the domain of the training data varies from that of the data to be processed. For this purpose, in the present work the idea of probabilistic deep learning is applied to the task of dense stereo matching for the first time. Based on the well-known and commonly employed GC-Net architecture, a novel probabilistic neural network is presented, for the task of joint depth and uncertainty estimation from epipolar rectified stereo image pairs. Instead of learning the network parameters directly, the proposed probabilistic neural network learns a probability distribution from which parameters are sampled for every prediction. The variations between multiple such predictions on the same image pair allow to approximate the model uncertainty. The quality of the estimated depth and uncertainty information is assessed in an extensive evaluation on three different datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源