论文标题
自我监督的线性运动脱张
Self-Supervised Linear Motion Deblurring
论文作者
论文摘要
运动模糊图像挑战许多计算机视觉算法,例如,特征检测,运动估计或对象识别。深度卷积神经网络是图像过度的最先进。但是,以相应的清晰和模糊图像对获得训练数据可能很困难。在本文中,我们提出了一种自我监督运动脱生的可区分的重新数字模型,该模型使网络能够从现实世界模糊的图像序列中学习,而无需依靠尖锐的图像进行监督。我们的关键见解是,从连续图像获得的运动提示产生了足够的信息,以告知DEBLURING任务。因此,我们将脱毛作为一个反向渲染问题,考虑到物理图像形成过程:我们首先预测了两个脱毛图像,我们从中估算了相应的光流。使用这些预测,我们重新呈现模糊的图像并将相对于原始模糊输入的差异最小化。我们使用合成数据集和实际数据集进行实验评估。我们的实验表明,自我监督的单图像脱毛确实是可行的,并导致视觉上令人信服的结果。
Motion blurry images challenge many computer vision algorithms, e.g, feature detection, motion estimation, or object recognition. Deep convolutional neural networks are state-of-the-art for image deblurring. However, obtaining training data with corresponding sharp and blurry image pairs can be difficult. In this paper, we present a differentiable reblur model for self-supervised motion deblurring, which enables the network to learn from real-world blurry image sequences without relying on sharp images for supervision. Our key insight is that motion cues obtained from consecutive images yield sufficient information to inform the deblurring task. We therefore formulate deblurring as an inverse rendering problem, taking into account the physical image formation process: we first predict two deblurred images from which we estimate the corresponding optical flow. Using these predictions, we re-render the blurred images and minimize the difference with respect to the original blurry inputs. We use both synthetic and real dataset for experimental evaluations. Our experiments demonstrate that self-supervised single image deblurring is really feasible and leads to visually compelling results.