论文标题
算术双曲表面上的测量周期的极端值
Extreme values of geodesic periods on arithmetic hyperbolic surfaces
论文作者
论文摘要
鉴于在紧凑的算术双曲表面上封闭的大地测量表面,我们显示了一系列拉普拉斯本征函数的序列,其沿大地测量的积分表现出非平凡的生长。通过Waldspurger的公式,我们推导了Rankin的中心值的下限 - Maass的l-selberg l-punctions times Times Times times theta系列与实际二次场相关的序列。
Given a closed geodesic on a compact arithmetic hyperbolic surface, we show the existence of a sequence of Laplacian eigenfunctions whose integrals along the geodesic exhibit nontrivial growth. Via Waldspurger's formula we deduce a lower bound for central values of Rankin--Selberg L-functions of Maass forms times theta series associated to real quadratic fields.