论文标题
无摩擦随机振荡器的能量生长界定
Bounding energy growth in friction-less stochastic oscillators
论文作者
论文摘要
该论文对非谐波,未加压,单孔,随机振荡器的能量学提出了分析和数值结果。缺乏阻尼和噪声的作用是导致此类系统中缺乏固定状态的原因。我们探索平均动力学,潜力和总能量的特性以及广义的均衡关系。可以证明,在无摩擦的动力学中,可以通过随机重置产生非平衡固定状态。对于适当的重置协议,平均能量变得有限。如果重置方案没有以续订时间间隔的有限差异为特征,随机重置的有限差异只能减慢平均能量的生长,但不构成它们的束缚。在有关重置频率的特殊条件下,平均能量的比率遵循广义的均衡关系。
The paper presents analytical and numerical results on energetics of non-harmonic, undamped, single-well, stochastic oscillators driven by additive Gaussian white noises. Absence of damping and the action of noise are responsible for lack of stationary states in such systems. We explore properties of average kinetic, potential and total energies along with the generalized equipartition relations. It is demonstrated that in the friction-less dynamics nonequilibrium stationary states can be produced by stochastic resetting. For an appropriate resetting protocol average energies become bounded. If the resetting protocol is not characterized by finite variance of renewal time intervals stochastic resetting can only slow down the growth of average energies but does not bound them. Under special conditions regarding frequency of resets, ratios of average energies follow the generalized equipartition relations.