论文标题
通过双重优化的二元化和自动分布式参数选择总通用变化
Dualization and Automatic Distributed Parameter Selection of Total Generalized Variation via Bilevel Optimization
论文作者
论文摘要
图像重建中的总广义变异(TGV)正则化依赖于通用一阶和二阶导数的虚拟卷积类型组合。这有助于避免总变化(TV)正则化的楼梯效应,同时仍保留图像中的鲜明对比度。相关的正则化效果至关重要地取决于两个参数,其适当调整代表了一个具有挑战性的任务。在这项工作中,提出了具有合适的基于统计的上层目标的双光线优化框架,以自动选择这些参数。该框架允许在空间上变化的参数,从而可以在高维图像区域中更好地恢复。建立了严格的二元化框架,对于数值解决方案,分别引入了较低级别问题解决方案的两种牛顿类型方法,即图像重建问题,分别引入了两个二元tgv算法。去核测试证实,与标量参数的结果相比,自动选择的分布式正则化参数通常导致改进的重建。
Total Generalized Variation (TGV) regularization in image reconstruction relies on an infimal convolution type combination of generalized first- and second-order derivatives. This helps to avoid the staircasing effect of Total Variation (TV) regularization, while still preserving sharp contrasts in images. The associated regularization effect crucially hinges on two parameters whose proper adjustment represents a challenging task. In this work, a bilevel optimization framework with a suitable statistics-based upper level objective is proposed in order to automatically select these parameters. The framework allows for spatially varying parameters, thus enabling better recovery in high-detail image areas. A rigorous dualization framework is established, and for the numerical solution, two Newton type methods for the solution of the lower level problem, i.e. the image reconstruction problem, and two bilevel TGV algorithms are introduced, respectively. Denoising tests confirm that automatically selected distributed regularization parameters lead in general to improved reconstructions when compared to results for scalar parameters.