论文标题

手风琴:集群和选择有关指导网络扩展和查询答案的相关数据

ACCORDION: Clustering and Selecting Relevant Data for Guided Network Extension and Query Answering

论文作者

Ahmed, Yasmine, Telmer, Cheryl, Miskov-Zivanov, Natasa

论文摘要

尤其是从知识来源查询新信息,尤其是出版文献,旨在为正在研究的系统提出的问题提供精确而快速的答案。在本文中,我们介绍了手风琴(将相互作用的数据与网络的数据联系起来的有条件),一种新颖的工具和一种方法,以通过自动组装新的或使用已发表的文献来扩展现有模型,从而有效地回答生物学问题。我们的方法将信息提取和聚类与模拟和正式分析集成在一起,以允许自动迭代过程,其中包括一组所需的系统属性,包括组装,测试和选择最相关的模型。我们将方法应用于控制T细胞分化的电路模型。为了评估我们的方法,我们将使用自动化模型扩展方法与先前发布的手动扩展T细胞分化模型进行比较我们获得的模型。除了展示以前手动构建的模型的自动化和快速重建外,手风琴还可以组装出满足所需属性的多个模型。因此,它取代了大量繁琐甚至重刷的手动实验,并指导了生物系统中的替代假设和干预措施。

Querying new information from knowledge sources, in general, and published literature, in particular, aims to provide precise and quick answers to questions raised about a system under study. In this paper, we present ACCORDION (Automated Clustering Conditional On Relating Data of Interactions tO a Network), a novel tool and a methodology to enable efficient answering of biological questions by automatically assembling new, or expanding existing models using published literature. Our approach integrates information extraction and clustering with simulation and formal analysis to allow for an automated iterative process that includes assembling, testing and selecting the most relevant models, given a set of desired system properties. We applied our methodology to a model of the circuitry that con-trols T cell differentiation. To evaluate our approach, we compare the model that we obtained, using our automated model extension approach, with the previously published manually extended T cell differentiation model. Besides demonstrating automated and rapid reconstruction of a model that was previously built manually, ACCORDION can assemble multiple models that satisfy desired properties. As such, it replaces large number of tedious or even imprac-tical manual experiments and guides alternative hypotheses and interventions in biological systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源