论文标题
使用gans进行汽车软件测试的控制时间序列生成
Controlled time series generation for automotive software-in-the-loop testing using GANs
论文作者
论文摘要
测试汽车机电系统系统部分采用了循环方法,其中系统地涵盖了测试中系统的输入仍然是一个重大挑战。在目前的实践中,有两种主要的输入刺激技术。一种方法是制作输入序列,以减轻测试过程的控制和反馈,但没有将系统暴露于现实情况。另一个是从现场操作中记录的序列,该序列是现实的,但需要收集一个标签良好的数据集,该数据集具有足够的广泛使用能力,这很昂贵。这项工作应用了众所周知的生成对抗网络(GAN)的无监督学习框架,以学习记录的车辆内信号的未标记数据集,并将其用于生成合成输入刺激。此外,还展示了一种基于公制的线性插值算法,该算法保证了生成的刺激遵循与指定参考的可自定义相似性关系。这种技术的组合可以控制多种有意义和现实的输入模式,改善了虚拟测试覆盖范围并减少了对昂贵的现场测试的需求。
Testing automotive mechatronic systems partly uses the software-in-the-loop approach, where systematically covering inputs of the system-under-test remains a major challenge. In current practice, there are two major techniques of input stimulation. One approach is to craft input sequences which eases control and feedback of the test process but falls short of exposing the system to realistic scenarios. The other is to replay sequences recorded from field operations which accounts for reality but requires collecting a well-labeled dataset of sufficient capacity for widespread use, which is expensive. This work applies the well-known unsupervised learning framework of Generative Adversarial Networks (GAN) to learn an unlabeled dataset of recorded in-vehicle signals and uses it for generation of synthetic input stimuli. Additionally, a metric-based linear interpolation algorithm is demonstrated, which guarantees that generated stimuli follow a customizable similarity relationship with specified references. This combination of techniques enables controlled generation of a rich range of meaningful and realistic input patterns, improving virtual test coverage and reducing the need for expensive field tests.