论文标题

一眼无模板蛋白结构预测方法的演变

A glance into the evolution of template-free protein structure prediction methodologies

论文作者

Dhingra, Surbhi, Sowdhamini, Ramanathan, Cadet, Frédéric, Offmann, Bernard

论文摘要

使用计算方法对蛋白质结构进行预测已有二十年了,为在比较建模,AB Intio建模和结构改进方案中更加集中的研究和开发铺平了一种方法。基于模板的建模协议中已经看到了巨大的成功,而涉及无模板建模的策略仍然落后于较大的蛋白质(> 150 A.A.)。从头开始蛋白质结构预测方法的加班性方法已经观察到了各种改进,最近的方法归因于深度学习方法的使用,从其氨基酸序列中构建蛋白质主链结构。这篇评论重点介绍了针对蛋白质结构的无模板建模采取的主要策略,同时讨论了每个策略下开发的几个工具。它还将简要评论通过CASP平台的演变在时间过程中从头开始建模领域中观察到的进展。

Prediction of protein structures using computational approaches has been explored for over two decades, paving a way for more focused research and development of algorithms in comparative modelling, ab intio modelling and structure refinement protocols. A tremendous success has been witnessed in template-based modelling protocols, whereas strategies that involve template-free modelling still lag behind, specifically for larger proteins (> 150 a.a.). Various improvements have been observed in ab initio protein structure prediction methodologies overtime, with recent ones attributed to the usage of deep learning approaches to construct protein backbone structure from its amino acid sequence. This review highlights the major strategies undertaken for template-free modelling of protein structures while discussing few tools developed under each strategy. It will also briefly comment on the progress observed in the field of ab initio modelling of proteins over the course of time as seen through the evolution of CASP platform.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源