论文标题

纤维化和紧凑的小组作用在歧管上的稳定组动作覆盖了几何形状

Fibrations, and stability for compact group actions on manifolds with local bounded Ricci covering geometry

论文作者

Huang, Hongzhi

论文摘要

在这项工作中,我们(部分)在研究截面的折叠式曲率的研究中(部分)概括了两种经典工具:福卡亚(1987)和Cheeger-fukaya-Gromov(1992)的(奇异)纤维化定理(1992年),以及等距的稳定稳定性,用于等距的紧凑型群体对本地(Palais(19611)和Grove-kark的流行范围(1973)覆盖几何形状。我们的两个广义结果已在最近的小米rong的最新工作中使用,在概括了格罗莫夫的几乎平坦的歧管定理中,以最大程度地折叠的歧管,覆盖几何形状的局部有界的ricci。

In this work, we (partially) generalize two classical tools in study of collapsed manifolds with bounded sectional curvature: a (singular) fibration theorem by Fukaya (1987) and Cheeger-Fukaya-Gromov (1992), and the stability for isometric compact Lie group actions on manifolds by Palais (1961) and Grove-Karcher (1973), to manifolds with local bounded Ricci covering geometry. Our two generalized results have been used in a recent work of Xiaochun Rong in generalizing Gromov's almost flat manifolds theorem to maximally collapsed manifolds with local bounded Ricci covering geometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源