论文标题
手性活性流体的统计力学
Statistical mechanics of a chiral active fluid
论文作者
论文摘要
统计力学为仅使用几个热力学变量描述复杂材料提供了基础。目前没有这种框架远非平衡。在这封信中,我们使用由活性旋转器组成的案例研究的流体演示了热力学如何远离平衡。活动产生一个有效的温度,该温度既可以参数状态方程和新兴的玻尔兹曼统计。通过速度相关性重新统治的相同有效温度通过规范的绿色kubo关系来控制线性响应,以供熟悉的剪切粘度和手性流体中观察到的奇数(或霍尔)粘度。这些粘度的全频率依赖性可以通过将活性旋转液建模为在剪力压力空间中进行回旋体运动的随机步行者来分析得出。更笼统地,我们提供了绿色 - 库博关系的第一原理推导,这对于远离平衡的更广泛的流体有效。除了推进非平衡热力学外,我们的工作还证明了活性流体的非侵入性微流变学。
Statistical mechanics provides the foundation for describing complex materials using only a few thermodynamic variables. No such framework currently exists far from equilibrium. In this Letter, we demonstrate how thermodynamics emerges far from equilibrium, using fluids composed of active spinners as a case study. Activity gives rise to a single effective temperature that parameterizes both the equation of state and the emergent Boltzmann statistics. The same effective temperature, renormalized by velocity correlations, controls the linear response through canonical Green-Kubo relations for both the familiar shear viscosity and the odd (or Hall) viscosity observed in chiral fluids. The full frequency dependence of these viscosities can be derived analytically by modeling the active-spinner fluid as a random walker undergoing cyclotron motion in shear-stress space. More generally, we provide a first-principles derivation of the Green-Kubo relations valid for a broader class of fluids far from equilibrium. Besides advancing non-equilibrium thermodynamics, our work demonstrates in silico a non-invasive microrheology of active fluids.