论文标题

花圈产品中背包问题的复杂性

The complexity of knapsack problems in wreath products

论文作者

Figelius, Michael, Ganardi, Moses, Lohrey, Markus, Zetzsche, Georg

论文摘要

我们证明了在组的某些花圈产品中的计算问题以及(作为应用程序)的自由解决组的新复杂性结果。 For a finitely generated group we study the so-called power word problem (does a given expression $u_1^{k_1} \ldots u_d^{k_d}$, where $u_1, \ldots, u_d$ are words over the group generators and $k_1, \ldots, k_d$ are binary encoded integers, evaluate to the group identity?) and knapsack problem (does a给定公式$ u_1^{x_1} \ ldots u_d^{x_d} = v $,其中$ u_1,\ ldots,u_d,v $是组生成器上的单词,$ x_1,\ ldots,x_d $是变量,对天然数字有变量)。我们证明,用$ g $ nilpotent的$ g \ wr \ wr \ mathbb {z} $的花圈产品的电源单词问题和免费的Abelian群体的迭代花圈产品属于$ \ MATHSF {tc}^0 $。作为后者的应用,免费解决的组的电源单词问题是$ \ mathsf {tc}^0 $。另一方面,我们表明,对于花圈产品$ g \ wr \ mathbb {z} $,其中$ g $是一个所谓的均匀有效的不可溶解的组(这形成了不可溶解组的大型子类),电源词问题是$ \ m m iarssf {conp} $ - 硬性。对于背包问题,我们显示了$ \ Mathsf {np} $ - 免费的Abelian团体的迭代花环产品以及可免费解决的组的完整性。此外,每种花圈产品的背包问题$ g \ wr \ mathbb {z} $,其中$ g $均匀地不可溶解,为$σ^2_p $ -hard。

We prove new complexity results for computational problems in certain wreath products of groups and (as an application) for free solvable group. For a finitely generated group we study the so-called power word problem (does a given expression $u_1^{k_1} \ldots u_d^{k_d}$, where $u_1, \ldots, u_d$ are words over the group generators and $k_1, \ldots, k_d$ are binary encoded integers, evaluate to the group identity?) and knapsack problem (does a given equation $u_1^{x_1} \ldots u_d^{x_d} = v$, where $u_1, \ldots, u_d,v$ are words over the group generators and $x_1,\ldots,x_d$ are variables, has a solution in the natural numbers). We prove that the power word problem for wreath products of the form $G \wr \mathbb{Z}$ with $G$ nilpotent and iterated wreath products of free abelian groups belongs to $\mathsf{TC}^0$. As an application of the latter, the power word problem for free solvable groups is in $\mathsf{TC}^0$. On the other hand we show that for wreath products $G \wr \mathbb{Z}$, where $G$ is a so called uniformly strongly efficiently non-solvable group (which form a large subclass of non-solvable groups), the power word problem is $\mathsf{coNP}$-hard. For the knapsack problem we show $\mathsf{NP}$-completeness for iterated wreath products of free abelian groups and hence free solvable groups. Moreover, the knapsack problem for every wreath product $G \wr \mathbb{Z}$, where $G$ is uniformly efficiently non-solvable, is $Σ^2_p$-hard.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源