论文标题
BCC铁中边缘位错芯的分子静态模拟
Molecular static simulation of edge dislocation core in bcc iron
论文作者
论文摘要
我们使用改良的分子静态方法模拟BCC铁中的位错核心结构。该方法的一个特征是应用迭代过程的应用,在该过程中,在缺陷附近的原子结构和确定浸入弹性连续体的原子位移的常数的定位是以自洽的方式计算的。遵循上述方法,我们开发了一个模型来计算边缘位错的原子结构,并考虑到主计算细胞周围的弹性介质的各向异性。通过引入脱位弹性场的参数的明确角度来考虑各向异性:汉堡矢量和泊松比的大小产生的弹性场的参数。进行仿真,用于沿[100]的汉堡矢量的分裂位错。显示了迭代算法的收敛性,并考虑了计算细胞大小对结果的影响。计算结果是:BCC铁中错位的原子结构,距离位错线大距离处的参数的角度依赖性以及整个模拟区域中的应变张量成分。
We simulate the dislocation core structure in bcc iron using the modified Molecular Static method. A feature of this method is the application of an iterative procedure in which the atomic structure in the vicinity of the defect and the constants that determine the displacements of atoms immersed in the elastic continuum are calculated in a self-consistent manner. Following the mentioned approach, we develop a model for calculating the atomic structure of edge dislocations, taking into account the anisotropy of the elastic medium surrounding the main calculation cell. Anisotropy is taken into account by introducing an explicit angular dependence for the parameters of the elastic field created by the dislocation: magnitude of Burgers vector and Poisson's ratio. Simulation is carried out for a split dislocation with Burgers vector along [100]. The convergence of the iterative algorithm is shown and the influence of the computational cell size on the results is considered. Calculated results are: atomic structure of dislocation in bcc iron, angular dependence of the parameters describing the elastic dislocation field at large distances from the dislocation line, and the strain tensor components in the entire simulation area.