论文标题

单索引模型的条件回归

Conditional regression for single-index models

论文作者

Lanteri, Alessandro, Maggioni, Mauro, Vigogna, Stefano

论文摘要

单个索引模型是用于内在回归的统计模型,其中假定响应取决于预测变量的单个但未知的线性组合,从而使回归函数表示为$ \ Mathbb {e} [y | x] = f(\ langle v,x \ rangle)$对于某些未知\ emph {index} vector $ v $和\ emph {link}函数$ f $。条件方法通过平均$ x $以$ y $为条件的$ x $提供了一种简单有效的方法来估算$ v $,但取决于其最佳选择未知的参数,并且不提供$ f $的概括。在本文中,我们提出了一种在明确的参数表征下以$ \ sqrt {n} $速率收敛的新条件方法。此外,我们证明,当组合到任何$ \ sqrt {n} $ - 融合索引估算器时,多项式分区估计值达到了Hölder函数回归的$ 1 $二维最小值率。总体而言,这产生了一个缩小尺寸的估计器,并在准线性时间内达到统计最佳性的单个单个模型的回归。

The single-index model is a statistical model for intrinsic regression where responses are assumed to depend on a single yet unknown linear combination of the predictors, allowing to express the regression function as $ \mathbb{E} [ Y | X ] = f ( \langle v , X \rangle ) $ for some unknown \emph{index} vector $v$ and \emph{link} function $f$. Conditional methods provide a simple and effective approach to estimate $v$ by averaging moments of $X$ conditioned on $Y$, but depend on parameters whose optimal choice is unknown and do not provide generalization bounds on $f$. In this paper we propose a new conditional method converging at $\sqrt{n}$ rate under an explicit parameter characterization. Moreover, we prove that polynomial partitioning estimates achieve the $1$-dimensional min-max rate for regression of Hölder functions when combined to any $\sqrt{n}$-convergent index estimator. Overall this yields an estimator for dimension reduction and regression of single-index models that attains statistical optimality in quasilinear time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源